

Available online at www.sciencedirect.com

Journal of Power Sources 179 (2008) 9-16

www.elsevier.com/locate/jpowsour

Performance and stability of composite nickel and molybdenum sulfide-based anodes for SOFC utilizing H₂S

V. Vorontsov, W. An, J.L. Luo*, A.R. Sanger, K.T. Chuang

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada

Received 5 December 2007; received in revised form 28 December 2007; accepted 31 December 2007 Available online 4 January 2008

Abstract

Performances of four anode compositions with different weight ratios of $Ni_{3\pm x}S_2$ to MoS_2 (2:1, 1:1, 1:2 and 1:4) were compared for H_2S oxidation in SOFC at 700-850 °C. Their thermal and chemical stability were determined using DSC/TGA, XRD, SEM and NAA. Electrochemical stability was investigated in fuel cell mode under OCV and constant overpotential conditions. It was shown that MoS₂ disappearance previously attributed to its volatility at temperature above 450 °C was instead related to its preliminary oxidation to MoO₃ in fuel cell mode as MoO₃ is highly volatile at temperatures above 600 °C. Suppression of volatility of MoO₃ by addition of $Ni_{3+x}S_2$ was shown by DSC/TGA analysis. Highest power density ca. 300 mW cm^2 at 850 °C was achieved with 1:1 weight ratio anode composition. All four compositions had unstable electrochemical performance which was more pronounced under polarization conditions than at OCV. © 2008 Elsevier B.V. All rights reserved.

Keywords: Hydrogen sulfide; Nickel sulfide; Molybdenum sulfide; Solid oxide fuel cell

1. Introduction

Each year large amounts of H₂S are generated worldwide, mostly as by-products from petroleum, natural gas and coal gasification industries. The adverse effects of H₂S on industrial processes, human health and the environment make it necessary to remove it from all effluent streams. It is anticipated that additional large quantities of H2S will be produced due to an increase in utilization of high-sulfur crude oils and an expansion of coal gasification/liquefaction technology.

Many processes have been developed to remove and/or recover H₂S, including adsorption, absorption, hydrogen production and conversion to elemental sulfur via the two-step Claus process. Such H₂S processing units require high capital investments. Also, as the final products are of low commercial value, there is high demand to find more economical and efficient hydrogen sulfide recovery methods.

It is well known that H₂S decomposes at high temperatures into hydrogen and sulfur via the general equilibrium reaction

0378-7753/\$ - see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2007.12.097

(Eq. (1)):

$$H_2S \leftrightarrow 1/2S_2 + H_2 \tag{1}$$

Therefore, it would be highly desirable if hydrogen originating from this reaction could be electrochemically oxidized in a SOFC to generate electrical energy, leaving sulfur and water as exclusive anode reaction products. Thus utilization of H₂S in solid oxide fuel cells provides a potentially economical and powerful alternative for concurrent chemical conversion and power generation.

The feasibility of an electrochemical oxidation of H₂S in SOFC was first demonstrated in the late 1980s. Pujare et al. had showed that SOFC based on yttria-stabilized zirconia (YSZ) electrolyte could operate on high levels of H₂S fuel at 900 °C [1]. Subsequent studies by the same group revealed that various thiospinels and transition metal sulfides were active as anode electrocatalysts for H₂S oxidation [2]. Among many materials studied, $NiFe_2S_4 > WS_2 > CuCo_2S_4$ (in order of decreasing activity) anodes were the most active. Despite reported high values of the activity for H₂S oxidation, there were no reports of analysis of stability of such materials under fuel cell conditions.

Ong et al. studied anodic oxidation of H₂ and H₂S on YSZ electrolyte with porous Au, Ni and Pt electrodes [3]. They

Corresponding author. Tel.: +1 780 492 2232; fax: +1 780 492 2881. E-mail address: jingli.luo@ualberta.ca (J.L. Luo).

showed that, although Au is not a highly active oxidation catalyst, it has the advantage that it is not susceptible to poisoning. Ni and Pt anodes had high initial performance but experienced an abrupt drop in performance attributable to the reversible formation of NiS and PtS at the anode surface. Although these metallic sulfide phases are electronically conductive, the sulfidation process causes the delamination of the anode material from YSZ electrolyte.

The potential for utilization of H_2S in ceria-based SOFC with porous platinum electrodes has also been demonstrated by Winnick and Weaver [4]. However, while doped ceria exhibited higher ionic conductivities than YSZ, the electronic conductivity of ceria at high temperatures in a H_2S -rich environment reduced the open circuit potential, thus leading to decrease in cell power density. Later results from the same group showed the performance of a SOFC utilizing thin 40 µm YSZ electrolyte and Li₂S/CoS anode with initial powder density to be ca. 400 mW cm⁻² at 770 °C. Stability tests performed with this material showed that it is thermally unstable and cell performance decreased with time [5].

Our group has previously investigated fuel cell performances using Ni_{3±x}S₂, CoS, MoS₂ and their combinations as anode materials at 700–850 °C [6–8]. MoS₂ mixed with Ni_{3±x}S₂ in a 1:1 weight ratio showed the highest activity with maximum power density ca. 40 mW cm⁻² at 850 °C in [H₂S, Ni_{3±x}S₂–MoS₂/YSZ/Pt, air] fuel cell configuration. We have also developed proprietary formulations with superior performance by mechanically mixing these composite sulfides with Ag and YSZ powders to improve conductivity and electrochemical reaction volume [8]. A power density of 200 mW cm⁻² was achieved at 850 °C in [H₂S, Ni_{3±x}S₂–MoS₂–Ag–YSZ/YSZ/Pt, air] fuel cell configuration.

The aim of the present work was to investigate performance and stability of MoS_2 and $Ni_{3\pm x}S_2$ -based anodes with different weight ratios of nickel to molybdenum sulfides to find optimum anode composition for SOFC operating on pure H₂S at 700–850 °C.

2. Experimental

2.1. Preparation of anode materials

The sources of metal sulfides used as starting materials for anode catalyst preparation were MoS₂ (Aldrich, 99.9%) and nickel sulfide (Alfa Aesar, 99.9%). A range of Ni_{3±x}S₂–MoS₂ catalysts was prepared using different initial nickel sulfide to MoS₂ ratios by weight (1:1, 1:2, 1:4 and 2:1) as shown in Table 1. All catalysts were admixed with 5 wt% of Ag (<325 mesh) and

Table 1

5 wt% of YSZ (10–20 μ m) powders (both from Alfa Aesar). All resulting powders were mixed and homogenized in 95% ethanol in an ultrasonic bath for several hours. All formulations were heat treated at 1050 °C for 2 h under N₂ stream (99.9995% purity, from Praxair). The resulting powders were then re-ground before use in preparation of electrode/electrolyte assemblies.

2.2. Cell design

Commercially available 8 mol% yttria-stabilized zirconia (YSZ-8) disks were obtained from Intertec Southwest for use as the electrolyte. Disks were 0.3 mm thick and 25.4 mm in diameter. To enhance the adhesion between the electrode material and the YSZ disk, the surfaces of the electrolytes were manually roughened by mechanical grinding using silicon carbide powder then cleaned. Platinum paste (Heraeus CL11-5100) was screen printed onto one side of the electrolyte disk as cathode. Anode catalyst powders were mixed with α -terpineol to make a paste which then was screen printed onto the other side of YSZ disk. After drying overnight at room temperature, disks were fired at 1050 °C for 30 min in N₂ flow to achieve good adhesion of electrodes to the membrane. The anode and cathode each had a geometrical area ca. 1 cm² and were ca. 50 µm thick.

2.3. Experimental setup

The experimental setup is described in Ref. [9]. In brief, the resulting membrane electrode assembly (MEA) was sandwiched between two pairs of co-axially aligned pairs of alumina cylinders. The inner cylinders served as anode and cathode feed and the outer ones as exhaust, respectively. The outer perimeter of each tube was sealed to the respective rims of the membrane electrode assembly by applying a thin layer of ceramic adhesive (Aremco 503). The whole operating section of the assembly was placed in a tubular furnace (Thermolyne F79300), while the ends of the alumina cylinders extended outside the furnace to allow connections for feed and exhaust gases. The furnace had a uniform temperature zone $(\pm 0.6 \,^{\circ}\text{C})$ over the central 7.62 cm length of the cell. The ceramic sealant was cured using the manufacture's recommended procedure while high purity N_2 (99.9995%) and extra dry air flowed through the respective anode and cathode chambers. The cell assembly was leak tested prior to operation of the cell under reaction conditions. Experiments were conducted in the temperature range of 700-850 °C and, after the temperature stabilized, flow rates of $H_2S 25 \text{ cm}^3 \text{min}^{-1}$ and air $50 \text{ cm}^3 \text{min}^{-1}$ were introduced to anode and cathode sides of the membrane assembly, respectively. Gold gauze (52 mesh) was used as current collector for

NiS to MoS_2 by weight (theoretical)	2:1		1:1		1:2		1:4	
	Ni	Мо	Ni	Мо	Ni	Мо	Ni	Мо
Before fuel cell test (wt%) After fuel cell test (wt%)	$\begin{array}{c} 42.5 \pm 0.6 \\ 41.0 \pm 0.9 \end{array}$	$\begin{array}{c} 19.9 \pm 0.6 \\ 19.4 \pm 0.2 \end{array}$	37.8 ± 0.7 35.4 ± 0.6	$\begin{array}{c} 23.6 \pm 0.2 \\ 23.7 \pm 0.2 \end{array}$	$\begin{array}{c} 20.4 \pm 0.6 \\ 23.7 \pm 0.8 \end{array}$	$\begin{array}{c} 38.3 \pm 0.3 \\ 40.5 \pm 0.4 \end{array}$	$\begin{array}{c} 12.1 \pm 0.6 \\ 13.6 \pm 0.6 \end{array}$	42.2 ± 0.4 31.1 ± 0.5

^a Anode catalyst composition by weight: 90% MoS₂-Ni_{3±x}S₂; 5% Ag; 5% YSZ

both electrodes since it is more stable in H_2S [10–12] than Pt [13–15]. The gold gauzes were in intimate contact with the surface of each electrode and other sides were spot welded to gold lead wires.

2.4. Electrochemical characterization

All electrochemical measurements where performed when the anode feed was switched to H_2S and a stable open circuit voltage (OCV) was established. Fuel cells' potentiodynamic and potentiostatic characteristics were recorded using a Solartron electrochemical interface SI 1287 system. Electrochemical impedance spectroscopy (EIS) measurements were performed at OCV with the applied amplitude 10 mV over the frequency range 100 kHz to 0.1 Hz using a Solartron 1255B frequency response analyzer.

2.5. Anode material characterization

Weight change and thermal stability of anode materials over the temperature range 25–1000 °C were determined using simultaneous differential scanning calorimetry (DSC) and thermogravimetry (TGA) analyses using a NETZSCH STA 409PC system under N₂ or air flows and a temperature ramp of 10 °C min⁻¹. Images and composition of fresh and used anodes were obtained using scanning electron microscopy with X-ray energy dispersive analysis (SEM-EDX) using a Hitachi S-2700 scanning electron microscope equipped with a PGT IMIX digital imaging system and a PGT PRISM IG detector for EDX. Phase composition and chemical stability were analyzed using X-ray diffraction (XRD) with a Rigaku Rotaflex X-ray diffractmeter. Relative concentrations of Ni and Mo in prepared catalyst powders before and after fuel cell test were obtained using neutron activation analysis (NAA) at the SLOWPOKE Nuclear Reactor Facility.

3. Results and discussion

3.1. Thermal and chemical stability of MoS_2 , $Ni_{3\pm x}S_2$ and a mixture of $MoS_2/Ni_{3\pm x}S_2$

MoS₂ is most commonly used for hydrodesulfurization processes in the temperature range 300–400 °C and as a catalyst for hydrogen production from hydrogen sulfide at 600–800 °C [16,17]. Because of its high electronic conduction, MoS₂ could be a good candidate as an anode material in H₂S-powered SOFC. Our group had determined the performance of MoS₂ as an anode material for H₂S-powered SOFC [6,7]. However, the fuel cell performance results with MoS₂ anode were relatively low. Moreover, there was little or no MoS₂ left on YSZ disks after several hours of operation at 850 °C [6,7], although we have sintered the MoS₂ with the YSZ electrolyte with no visual changes and the XRD results confirmed that there were no chemical or phase changes in N₂ at 1050 °C. The disappearance of MoS₂ was previously attributed to volatility of MoS₂.

Some controversy exists on stability of MoS_2 . Some sources described MoS_2 as volatile at temperatures above 450 °C [6,7],

while others stated that it decomposes at 650 °C and above [12]. Other sources reported MoS₂ to be thermally and chemically stable in vacuum, inert and reducing atmospheres up to 1100 °C [18–22]. It is well known that MoS_2 is stable in H_2S at least up 800 °C [16,17]. Therefore, we did not expect any volatility or decomposition during fuel cell performance. If there was no volatilization of MoS₂ under H₂S, the only time when an unwanted reaction could happen to the anode material was during fuel cell heating to 700 °C under N₂, before the anode feed was switched to H_2S . Indeed, when the cell was heated to 700 $^\circ C$ and then cooled down to room temperature under N2 flow, without any H₂S flow in between, the anode surface appeared to have oxidized since its color changed to orange-yellow, characteristics of MoO_x . Thus MoS_2 was susceptible to oxidation to volatile MoO₃ by trace amounts of O₂ present during preparation for testing. To confirm the reason for the disappearance of MoS_2 , thermal behavior for MoS_2 in N_2 atmosphere was investigated using TGA and DSC analyses and the results are shown in Fig. 1. The main feature of the TGA curve for MoS_2 is the absence of any weight change up to 1000 °C. Since XRD data of fresh and after-exposed MoS₂ samples did not show any major crystallographic differences, and there was no weight change upon exposure to N_2 , we confirmed that MoS_2 is thermally stable and non-volatile in N2 up to 1000 °C. Several peaks on the DSC curve are attributable to reversible phase transitions which are not necessarily accompanied by weight change (e.g., polymorphism or melting, etc.). We could not relate these peaks to MoS₂ phase diagram and there were no published sources on DSC for pure MoS_2 in N_2 .

We investigated two possible sources of oxygen which could account for MoS_2 loss during fuel cell test preparation. First, some molecular oxygen could have leaked through sealant or crossover from the cathode side and oxidize MoS_2 to MoO_3 . MoS_2 is readily oxidized at temperatures as low as $100 \,^{\circ}C$ [23]. MoO_3 is a highly volatile compound with vapor pressure as high as 10.13 Pa at 661 $^{\circ}C$ in air, which increases very rapidly at high temperature [24]. This possibility was ruled out since YSZ disks with MoS_2 as anode electrocatalyst showed high and stable values of OCV (ca. 1.05 V) in the fuel cell mode which would be reduced and/or unstable if there were substantial oxygen leaks.

The second possible source was that there was an oxygen potential gradient across the YSZ membrane in the fuel cell setup in the heat up stage at which air on cathode side and N₂ on anode side which is switched to H₂S at 700 °C. An ideal electrolyte is one in which the only means for oxygen conveyance to the anode compartment is as oxide ions. In this case the chemical potential of oxygen is balanced by the electrical potential developed across electrolyte resulting in the zero net oxygen flux. However, YSZ also has small electronic conductivity, so there will be a small countercurrent of oxygen ion and electron fluxes which are related by the ratio of their respective conductivities in YSZ at any given temperature. The existence of the oxygen flux is responsible for the phenomena known as non-Faradaic electrochemical modification of catalytic activity (NEMCA) when the number of moles of species reacted is much higher than that proportional to the current [25]. According to Vayenas et al. [26], NEMCA is due to electrocatalytically driven

Fig. 1. TGA and DSC analysis of MoS₂ powder in N₂ atmosphere.

and controlled back-spillover of ions from solid electrolyte onto gas-exposed electrode surface. Under these conditions the two half-cell reactions taking place on cathode and anode will be reduction of oxygen (Eq. (2)) and oxidation of oxide ions (Eq. (3)), respectively, with a zero net reaction:

$$O_2 + 4e^- = 2O^{2-}$$
(2)

$$2O^{2-} = O_2 + 4e^-$$
(3)

Any oxygen so formed at the MoS₂ anode would oxidize the catalyst to MoO₃ even before H₂S is switched on. Even though O₂ concentration is low on the anodic side in N₂ stream it is highly active and easily reacts with the anode, leading to oxidation of MoS₂. Thus the small current of oxygen ions from the cathode under OCV conditions may explain why there was almost no MoS₂ left after testing and why the anode changed to a color characteristic of MoO₃. MoS₂ oxidized to MoO₃ in fuel cell during startup and MoO₃ is highly volatile at temperatures above 600 °C.

In contrast, there was no loss of Mo when composite MoS_2 and $Ni_{3\pm x}S_2$ were successfully used as SOFC anodes [6–8], and these anodes have shown much better electrochemical fuel cell performance than MoS_2 . No volatility or color/phase changes were observed either visually or by XRD [8] when comparing fresh and used catalysts. In order to determine the effect of nickel sulfide on volatility and oxidative behavior of MoS_2 , we performed thermal analysis of samples of pure sulfides and samples comprising MoS_2 mixed with $Ni_{3\pm x}S_2$ in 1:1 weight ratio in an air stream (Fig. 2).

MoS₂ showed initial mass loss at 450–550 °C. The mass diminished by 8.7%, a value close to that for conversion of all MoS₂ to MoO₃. The rapid drop, occurring as the temperature increased by only 100 °C, indicated that the transition took place in a single step, in agreement with the literature on MoS₂ oxidation [23]. In the temperature range 760–820 °C another rapid drop in weight (ca. 63%) occurred, attributable to sublimation of MoO₃. Weight loss continued after 860 °C at a slower rate, and after 950 °C it leveled off slowly. Endothermic peaks on the DSC curve shown in Fig. 3 corresponded to both weight-loss

Fig. 2. TGA analysis of pure $Ni_{3\pm x}S_2$, MoS_2 and mixture of both in 1:1 weight ratio in air.

steps. The residual mass after heating was ca. 8%. Upon cooling to room temperature no change in mass is observed. Since MoO_3 is volatile above 600 °C one would expect mass change on cooling as well at least until sample is above 600 °C. Since

Fig. 3. DSC analysis of $Ni_{3\pm x}S_2$, MoS_2 and mixture of both in 1:1 weight ratio in N_2 .

this was not observed it follows that this residual material left was not MoO₃ but something else like molybdenum oxysulfate or molybdenum dioxide. There was too little amount of sample left to run post-test XRD analysis on it.

Ni_{3±x}S₂ oxidation behavior varies substantially depending on sulfur content, heating rate and sample grain size [27,28]. Several reaction pathways are possible, with partial or complete oxidation of the initial nickel sulfide. The TGA curve for Ni_{3±x}S₂ sample showed a slight weight increase (ca. 3%) at 550–650 °C, followed by ca. 23% decrease in weight over the interval 650–800 °C. The XRD results have shown that the commercial Ni_{3±x}S₂ consisted mainly of Ni₃S₂ phase, but it is possible that either some amorphous or below-detectable XRD limit phases also were present. NAA results show Ni content in the sample as 70.3 wt%, which is too small for the Ni₃S₂ phase and too high for the NiS phase. According to the nickel–sulfur phase diagram [29], 70.3 wt% of Ni corresponds to a solid solution of Ni₃S₂ and Ni₇S₆ phases. The XRD analysis has shown the final oxidation product to be NiO.

We compared oxidation of composite nickel-molybdenum sulfides with the single phase materials. A mixture of $Ni_{3+x}S_2$ and MoS₂ showed an initial slight weight increase, similar to that observed for pure nickel sulfide, followed by a 7.7% weight decrease when compared with initial sample weight. Unlike the behavior of pure MoS₂, there was no rapid or substantial weight decrease for the mixture up to 1000 °C, and no change upon cooling the sample to room temperature in air. The XRD analysis has shown the existence of a single NiMoO₄ phase. No other phases such as MoO₃ or NiO have been detected, in contrast to products from oxidation of the corresponding single sulfides. Therefore, the addition of nickel sulfide prevents formation of MoO₃ from oxidation of MoS₂ that takes place in situ before the SOFC test. If one was to use 1:1 weight ratio of Ni₃S₂ to MoS₂ as the starting material composition then an 8.95% weight loss would be expected. This value is quite close to that (7.7%) obtained from the experimental TG curve. The difference between the values is attributed in large part to the presence of small amounts of phases other than Ni_3S_2 in the starting $Ni_{3\pm x}S_2$ material.

3.2. Stability of microstructures for pure $Ni_{3\pm x}S_2$ and a composite $MoS_2-Ni_{3\pm x}S_2$ anode

For successful application of a fuel cell anode, densification must be prevented to facilitate fast reactant–product mass transfer within a porous anode structure and to sustain high interfacial surface area. It was important to investigate thermal stability of the macrostructures of pure Ni_{3±x}S₂ and composite MoS₂–Ni_{3±x}S₂ anodes. DSC results for nickel sulfide heated in N₂ to 1000 °C are shown in Fig. 3. For pure nickel sulfide there were three characteristic sharp peaks and several smaller peaks. Two of these close endothermic peaks, at 564 °C and 524 °C, represented formation of $\beta_1(Ni_3S_2)$ from low temperature $\beta'(Ni_3S_2)$ phase; and $\beta_2(Ni_4S_3)$ phase which is formed by the reaction of $\beta'(Ni_3S_2)$ and $\gamma(Ni_7S_6)$ phases. Both β_1 and β_2 phases are stable only at temperatures higher than 500 °C, and they revert to $\beta'(Ni_3S_2)$ and $\gamma(Ni_7S_6)$ phases upon cooling below 500 °C. Reversibility was confirmed by doing two consecutive heating and cooling cycles in TG/DSC where the same behavior was observed in both case. Results coincide well with the nickel–sulfur phase diagram [29] and XRD showed existence of only $\beta'(Ni_3S_2)$ phase before and after heat treatment. A third sharp peak at 800–805 °C, which was not associated with a weight change, corresponded to melting of Ni_3S_2, which after cooling the sample was completely fused. The phase diagram shows existence of a melting point at ca. 800 °C. Thus results for the commercial material agreed well with the nickel–sulfur phase diagram [29]. Our results, together with some other literature reports [12], suggested that Ni_{3±x}S_2 alone was not a suitable anode material for SOFC operating at 700–850 °C since the material was susceptible to either excessive sintering or melting.

The DSC profile of composite $MoS_2-Ni_{3\pm x}S_2$ anode catalyst (1:1 weight ratio) (Fig. 3) showed a combination of peaks corresponding to those of the individual components. Although one peak was still present at ca. 800 °C, at a temperature similar to that attributed to the melting point of $Ni_{3\pm x}S_2$, there was no visible evidence of melting during the test of the composite anode. Similar results were reported for thermal decomposition of hydrogen sulfide over $Ni_{3\pm x}S_2$ catalyst, which had stable performance, and there was no decrease in surface area when the catalyst was mixed with Al₂O₃ or MoS₂ [30].

Although addition of $Ni_{3\pm x}S$ stabilized the composite catalyst against loss of Mo resulting from oxidation and improved fuel cell performance compared with that of MoS₂ alone, it was unknown whether the low thermal stability of nickel sulfide in the fuel cell operating temperature would affect performance over time. Consequently we determined fuel cell performance and stability using anode catalysts having different weight ratios of Ni_{3±x}S₂ to MoS₂ to find an optimal anode composition.

3.3. Fuel cell performance and stability using composite $MoS_2-Ni_{3\pm x}S_2$ anodes

Addition of 5 wt% each of Ag and YSZ powders increases electrochemical fuel cell performance, because of an increase in electronic conductivity due to the presence of Ag and an increase in the ionic conduction due to YSZ and an increase in triple phase boundaries [8]. Consequently, all our anode compositions under study were admixed with 5 wt% each of Ag and YSZ.

Fig. 4 presents impedance spectra for Ni_{3±x}S₂-MoS₂-Ag-YSZ anodes with different nickel sulfide to molybdenum sulfide weight ratios. At least two processes are seen to dominate in the EIS spectra at high (1–2 kHz) and low (1–10 Hz) frequencies. The spectra may contain contributions from more than two overlapping rate-limiting steps. We now have determined the contribution of ohmic (R_s) and total polarization (R_p) resistances. R_s is obtained as the high frequency intercept of the impedance with the Z' real axis, and R_p is the difference between the intercept of the impedance with the Z' real axis at the limit $f \rightarrow 0$ and the high frequency intercept. It can be seen that the fuel cell employing highest nickel sulfide content (Ni:Mo sulfides in 2:1 weight ratio) had the lowest ohmic resistance, but its polarization resistance was high compared with those of the 1:2 and 1:1 compositions. Total resistance (ohmic plus polarization)

Fig. 4. EIS spectra of SOFC utilizing different weight ratios of $Ni_{3\pm x}S_2$ to MoS_2 in composite anode material at 850 °C (legend shows weight ratios of nickel to molybdenum sulfides).

of composite anodes with 1:1 and 1:2 ratios was almost half that of the two other ratios tested.

Fuel cell maximum current and power densities at 850 °C with various ratios of nickel sulfide to molybdenum sulfide are plotted in Fig. 5. The fuel cell employing the 1:1 anode achieved the highest current and power densities, 1350 mA cm^{-2} and 300 mW cm^{-2} , respectively, which is the best fuel cell performance obtained in SOFC using 100% H₂S feed. Electrochemical reactions taking place across electrode/electrolyte interfaces depend strongly on electrode processing parameters which may lead to morphological changes and cause fluctuations in performance. Although great efforts were made to control and keep all processing parameters consistent to ensure the reproducibility of all data, the performance results varied about 20% between experiments. Therefore, Fig. 5 presents fuel cell performance averaged over several tests performed with the same anode composition.

For successful commercial application of any anode material, its activity must be sustainable for a long period of use.

Fig. 6. Fuel cell power density as function of $Ni_{3\pm x}S_2$ content in composite anode at 800 $^\circ\text{C}.$

The stability of the cells was tested in two modes, at OCV (zero current) and under polarization (fuel cell behavior). Later case is presented in Fig. 6 which shows the power densities as a function of time for the most active (1:1) and most stable (1:4)anode compositions at 800 °C. The cell with the 1:1 composition anode showed 66% decrease in power density over 12h when compared with initial performance, and the cell with 1:4 anode composition showed stable performance over 3 h. After 3 h the performance slowly declined at about ca. 3.5% per hour, to an overall decrease of 27% after 12h operation in a H₂S feed stream. Under OCV at 850 °C, the anode materials under investigation, except the catalyst with 1:4 weight ratio, showed degradation of performance within 4 h testing. The power density of the most active anode (1:1 weight ratio) decreased steadily by 45% during 4h operation. Anode compositions with 1:2 ratio had a 38% decrease, and the 2:1 ratio anode had a 20% decrease over 4 h. EIS spectra clearly show that anode polarization resistance increased with time although R_s stayed almost the same.

Fig. 5. Fuel cell performance of composite $Ni_{3\pm x}S_2$ -MoS₂-Ag-YSZ anode at 850 °C (bars represent current density on the left and curve shows power density on the right).

3.4. The compositional and morphological changes of composite $MoS_2-Ni_{3\pm x}S_2$ anodes

SEM/EDX and NAA analyses were performed to determine the morphological and compositional changes of all anode compositions after the fuel cell tests. Table 1 shows results of NAA analysis of fresh and used samples. For each composition except 1:4, the relative amounts of Mo and Ni did not change during testing. The used anode with 1:4 ratio showed ca. 25% decrease in Mo content. These data indicate that there may be a minimum amount of Ni_{3±x}S₂ required to prevent oxidation/sublimation of MoS₂, which was not fulfilled by the 1:4 anode composition.

Fig. 7. SEM photograph of composite $Ni_{3\pm x}S_2$, MoS_2 –Ag–YSZ anode with 1:1 weight ratio of nickel to molybdenum sulfide: (a) before fuel cell test, (b) after fuel cell test Ni-rich area (>75% is nickel sulfide) and (c) after fuel cell test Mo-rich area (>75% is molybdenum sulfide).

Our previous results have shown that there were no differences in phases between fresh and used samples [8].

EDX results for the anode after the fuel cell test revealed that there were areas rich (difference of 50% or more from the theoretical ratio of $Ni_{3\pm x}S_2$ to MoS_2) in either $Ni_{3\pm x}S_2$ or MoS_2 present within the used anode after the fuel cell tests, in contrast to more even distribution of $Ni_{3\pm x}S_2$ to MoS_2 components in fresh anodes ($\pm 5\%$ from the theoretical Ni_{3 $\pm x$}S₂ to MoS₂ ratio). Fig. 7 shows the SEM micrographs for the anode before and after fuel cell tests. Fig. 7(b) and (c) are the morphologies on the Ni-rich and Mo-rich areas, respectively. They show that the morphology changed significantly and the morphology was not uniform after the fuel cell tests. The SEM micrograph of the Ni_{3 $\pm x$}S₂-rich area [Fig. 7 (b)] shows that nickel sulfide particles were strongly agglomerated after H₂S fuel cell tests and that agglomeration became more pronounced with time. Such agglomeration significantly reduced the catalytically active surface area of the nickel sulfide, and the reduction in number of active anode surface sites during fuel cell testing appeared to have caused the loss of electrochemical performance of the anode catalysts.

4. Conclusions

 MoS_2 is thermally stable and non-volatile in N_2 up to $1000 \,^{\circ}C$. MoS_2 disappearance during fuel cell operation is due to its oxidation to MoO_3 which sublimated at temperatures above 600 $^{\circ}C$.

Ni sulfide stabilizes Mo sulfide because addition of nickel sulfide to MoS_2 prevents the formation of MoO_3 . However, a minimum amount of Ni must be present to ensure the formation of NiMoO₄ phase, rather than MoO₃.

All anode compositions with various ratios of nickel sulfide to molybdenum sulfide have high initial electrochemical activities for H_2S oxidation in SOFC. However, the performances of the anode materials for H_2S oxidation are not stable because of agglomeration of nickel sulfide particles and change in the anode composition.

Acknowledgments

Financial support from Shell Global Solutions is gratefully acknowledged. The authors would like to thank Dr. S. Duke, director of University of Alberta SLOWPOKE Nuclear Reactor Facility, for help with NAA analysis. Special thanks are to Dr. J. Melnik for very helpful discussions.

References

- N. Pujare, K. Tsai, A. Sammells, J. Electrochem. Soc. 136 (1989) 3662–3678.
- [2] A.F. Sammells, J. Patel, J. Osborne, R.L. Cook, Gas Sep. Purif. 6 (3) (1992) 141–147.
- [3] B.G. Ong, T.A. Lin, D.M. Mason, Electrochem. Soc. Proc. Ser. 12 (1987) 295–306.
- [4] D. Weaver, J. Winnick, J. Electochem. Soc. 134 (1987) 2451-2458.
- [5] C. Yates, J. Winnick, J. Electrochem. Soc. 146 (1999) 2841–2844.

- [6] M. Liu, G. Wei, J. Luo, A.R. Sanger, K.T. Chuang, J. Electrochem. Soc. 150 (2003) A1025–A1029.
- [7] M. Liu, H₂S-powered solid oxide fuel cells, PhD Thesis, University of Alberta, 2004.
- [8] G. Wei, J. Luo, A.R. Sanger, K.T. Chuang, J. Electrochem. Soc. 151 (2004) A232–A237.
- [9] M. Liu, P. He, J.L. Luo, A.R. Sanger, K.T. Chuang, J. Power Sources 94 (2001) 20–25.
- [10] C.R. Hammond, in: D.R. Lide (Ed.), CRC Handbook of Chemistry and Physics, CRC Press, Inc., Boca Raton, 1992–1993, pp. 4– 61.
- [11] F. Jellinek, in: D.W.A. Sharp (Ed.), MTP International Review of Science: Inorganic Chemistry, series one, Butterworth, London, 1972, pp. 339– 396.
- [12] D. Weaver, J. Winnick, J. Electrochem. Soc. 138 (1991) 1626–1637.
- [13] I.V. Yentekakis, C.G. Vayenas, J. Electrochem. Soc. 136 (1989) 996-1002.
- [14] L. Aguilar, S. Zha, Z. Cheng, J. Winnick, M. Liu, J. Power Sources 135 (2004) 17–24.
- [15] M. Liu, P. He, J. Luo, A.R. Sanger, K.T. Chuang, J. Power Sources 94 (2003) 20–25.
- [16] T. Chivers, J.B. Hyne, C. Lau, Int. J. Hydrogen Energy 5 (1980) 499-506.

- [17] K. Fukuda, M. Dokiya, T. Kameyama, Y. Kotera, Ind. Eng. Chem. Fundam. 17 (4) (1978) 243–248.
- [18] P. Cannon, Nature 183 (1959) 1612–1613.
- [19] S.K. Srivastava, B.N. Avasthi, J. Less-Common Met. 124 (1986) 85-92.
- [20] G. Eckert, Werkst. Korros. 9 (1958) 69-72.
- [21] L. Kolesnichenko, P. Trushko, L. Pugina, V. Ageeva, Poroshkovaya Metallurgiya 12 (7) (1972) 56–60.
- [22] A. Zelikman, O. Krein, Zh. Fiz. Khim. 29 (1955) 2081-2085.
- [23] Y. Shigegaki, S.K. Basu, M. Wakihara, M. Taniguchi, J. Therm. Anal. 34 (1988) 1427–1440.
- [24] G.V. Samsonov, The Oxide Handbook, IFI/Plenum, New York, 1973, pp. 199–200.
- [25] T. Kawada, H. Yokokawa, Key Eng. Mater. 125/126 (1997) 187-248.
- [26] C.G. Vayenas, S. Ladas, S. Bebelis, I.V. Yentekakis, S. Neophytides, J. Yi, C. Karavasilis, C. Pliangos, Electrochim. Acta 39 (1994) 1849–1855.
- [27] J.G. Dunn, C.E. Kelly, J. Therm. Anal. 12 (1977) 43-52.
- [28] G.M. Mehrotra, V.B. Tare, J.B. Wagner Jr., J. Electrochem. Soc.: Solid State Sci. Technol. 132 (1) (1985) 244–247.
- [29] T. Massalski, H. Okamoto, Binary Alloy Phase Diagrams, Second ed., ASM International, Materials Park, 1990, pp. 2852–2853.
- [30] H. Kiuchi, K. Funaki, T. Tanaka, Metal. Trans. B 14B (1983) 347-352.